Synthetic Routes to N-9 Alkylated 8-Oxoguanines; Weak Inhibitors of the Human DNA Glycosylase OGG1.
نویسندگان
چکیده
The human 8-oxoguanine DNA glycosylase OGG1 is involved in base excision repair (BER), one of several DNA repair mechanisms that may counteract the effects of chemo- and radiation therapy for the treatment of cancer. We envisage that potent inhibitors of OGG1 may be found among the 9-alkyl-8-oxoguanines. Thus we explored synthetic routes to 8-oxoguanines and examined these as OGG1 inhibitors. The best reaction sequence started from 6-chloroguanine and involved N-9 alkylation, C-8 bromination, and finally simultaneous hydrolysis of both halides. Bromination before N-alkylation should only be considered when the N-substituent is not compatible with bromination conditions. The 8-oxoguanines were found to be weak inhibitors of OGG1. 6-Chloro-8-oxopurines, byproducts in the hydrolysis of 2,6-halopurines, turned out to be slightly better inhibitors than the corresponding 8-oxoguanines.
منابع مشابه
Poly(ADP-ribose) polymerase 1 (PARP-1) binds to 8-oxoguanine-DNA glycosylase (OGG1).
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 th...
متن کاملSmall Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1).
The DNA base excision repair (BER) pathway, which utilizes DNA glycosylases to initiate repair of specific DNA lesions, is the major pathway for the repair of DNA damage induced by oxidation, alkylation, and deamination. Early results from clinical trials suggest that inhibiting certain enzymes in the BER pathway can be a useful anticancer strategy when combined with certain DNA-damaging agents...
متن کاملRepair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice.
Mitochondria are not only the major site for generation of reactive oxygen species, but also one of the main targets of oxidative damage. One of the major products of DNA oxidation, 8-oxodeoxyguanosine (8-oxodG), accumulates in mitochondrial DNA (mtDNA) at levels three times higher than in nuclear DNA. The main pathway for the repair of 8-oxodG is the base excision repair pathway initiated by o...
متن کاملP-120: Evaluation of OGG1 Ser326Cys Polymorphism in Idiopathic Male Infertility
Background Male infertility is a multifactorial syndrome encompassing a wide variety of disorders. In more than half of infertile men, the cause of their infertility is unknown (idiopathic) and could be congenital or acquired. OGG1 is a bifunctional glycosylaseii, in that it has both AP lyase and DNA glycosylase activity and one of its functions is to excise and remove 8-oxo-dGuo from DNA. Amon...
متن کاملN-methylpurine DNA glycosylase and 8-oxoguanine dna glycosylase metabolize the antiviral nucleoside 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole.
The rapid in vivo degradation of the potent human cytomegalovirus inhibitor 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BDCRB) compared with a structural L-analog, maribavir (5,6-dichloro-2-(isopropylamino)-1-beta-L-ribofuranosyl-1H-benzimidazole), has been attributed to selective glycosidic bond cleavage. An enzyme responsible for this selective BDCRB degradation, however, has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2015